
Commentaries on
Problems
JUDGE TEAM
ICPC 2023 2024 ASIA YOKOHAMA REGIONAL



BLACK
FRIDAY

discount
difficultiesinteractor



Sorry about the accident …



Solved vs. Teams @Freeze

0%

5%

10%

15%

20%

25%

30%

0 1 2 3 4 5 6 7 8 9 10 11

this year last year

Last Year

This Year

% of teams

# of problems solvedChatGPT



Problem vs. #Teams @Freeze

0

20

40

60

80

100

A B F D G K I E H J C

Sumbission Accepted

estimated difficulty order

BOSSES



A: Yokohama Phenomena
PROPOSER: KAZUHIRO INABA

AUTHOR: TOMOHARU UGAWA



Problem Description
Count “YOKOHAMA” hidden in the board

Y O H A
O K A M



Problem Description
Count “YOKOHAMA” hidden in the board

Y O H A
O K A M



Problem Description
Count “YOKOHAMA” hidden in the board

Y O H A

O K A M

Y O H A

O K A M

Y O H A

O K A M

Y O H A

O K A M

Y O H A

O K A M

Y O H A

O K A M

Y O H A

O K A M

Y O H A

O K A M



Any enumeration will work
ldepth-first search
ldynamic programming

1 1 1

1

1

1 2

Y O H A

O K A M

Y O K
…



B: Rank Promotion
PROPOSER: KAZUHIRO INABA

AUTHOR: KAZUHIRO INABA



Problem

Y NY Y NY Y N N Y Y N

If a sufficiently long (≧c) range contains Y’s 
in a sufficiently high (≧p/q) ratio,  rank += 1. 
What’s the final rank?

Sample Input:  c=4,  p/q = 4/7

3/4  ≧ 4/7 4/7  ≧ 4/7 

n ≦ 500000
c ≦ 200



Solution: O(nc)
No need to think about too-long (≧ 2c) 
ranges. Just check the Y-ratio of all the 
len≦ 2c-1 substrings.

ratio(Y) ≧ p/q
If a 2c sequence has a high Y-ratio,

ratio(Y) ≧ p/q

ratio(Y) ≧ p/q
or

either the first or the latter half also has.



Advanced Solution : O(n)
You can solve the problem even if the upperbound of c were large.

∑!"#
$ "!
#

≥ 𝑟

∑!"#$ (𝑥!−𝑟) ≥ 0

Average is larger than r.

Sum of xi-r is above 0.

Maintain the cumulative sum of(S[i]==‘Y’?1:0)–p/q  
and the max after the last rank promotion. Then, in O(1) you 
can check if a “higher than p/q” range exists.  



C: Ferris Wheel
PROPOSER: SOH KUMABE

AUTHOR: SOH KUMABE



Problem Description
Given 𝟐𝒏 points on circle,



Problem Description
Given 𝟐𝒏 points on circle,

Count the number of ways to 
color them by 𝒌 colors so that



Problem Description
Given 𝟐𝒏 points on circle,

Count the number of ways to 
color them by 𝒌 colors so that

There is a non-crossing 
perfect matching of points

Such that matched points 
have the same color



Problem Description
Given 𝟐𝒏 points on circle,

Count the number of ways to 
color them by 𝒌 colors so that

There is a non-crossing 
perfect matching of points

Such that matched points 
have the same color

Up to rotation



Matching to Parenthesis 

((()))()



Matching to Parenthesis
There is a non-crossing 
perfect matching of points

Such that matched points 
have the same color

((()))()

Parenthesis
is balanced



If not “up to rotation”
Let 𝒙𝒊 be the number of
balanced parenthesis that have
𝒊 places with height 𝟎

Answer is ∑𝒊"𝟏𝒏 𝒙𝒊𝒌𝒊 𝒌 − 𝟏 𝒏%𝒊

((()))()
012321010



If not “up to rotation”
Let 𝒙𝒊 be the number of
balanced parenthesis that have
𝒊 places with height 𝟎

Can be computed like 
Catalan numbers

Time Complexity: 𝑶(𝒏)



“Up to rotation”
Use Pólya’s enumeration theorem

Count the colorings of period 𝒑



“Up to rotation”

((()(()(())((((

There is a non-crossing 
perfect matching of points

Such that matched points 
have the same color

Remaining 
‘(‘s are
palindrome

𝒑



“Up to rotation”
If 𝒑 is even, no remaining `(`

same as before 

If 𝒑 is odd, 
remaining `(`s are palindrome



“Up to rotation”
If 𝒑 is odd, 
remaining `(`s are palindrome

Let 𝒙𝒊 be the number of parenthesis 
that have 𝒊 places with height 𝟎
and some number of `(`s remain

Answer is ∑𝒊"𝟏
𝒑"𝟏
𝟐 𝒙𝒊𝒌𝒊 𝒌 − 𝟏

𝒑"𝟏
𝟐 $𝒊



“Up to rotation”
Let 𝒙𝒊 be the number of parenthesis 
that have 𝒊 places with height 𝟎
and some number of `(`s remain

Can be sequentially computed as
“diagonal sum” of
Catalan number

Time Complexity:
𝑶 𝐬𝐮𝐦 𝐨𝐟 𝐝𝐢𝐯𝐢𝐬𝐨𝐫𝐬 𝐨𝐟 𝟐𝒏
= 𝑶(𝒏 𝐥𝐨𝐠 𝒏)



D: Nested Repetition 
Compression

PROPOSER: KENTO EMOTO
AUTHOR: TAKASHI CHIKAYAMA



Compression Specifying Repetitions
l Up to nine repetitions of the same string can be 

specified
l ababab → 3(ab)

l abababaaaaa → 3(ab)5(a)

l Repetitions can be arbitrarily nested
l aaaaaaaaaaaa → 3(4(a))

l As this compression scheme is context-free, 
compression of distinct substrings are independent



The Best Compression is Either:
l Repetition of optimally compressed segments, 

l Two optimally compressed ones concatenated, or

l As is, i.e., no compression at all.



Preparation: Repetition Table

For all the segments beginning from all the 
positions in the original string, a table of repeated 
patterns and their lengths should be prepared.

The table can be made with complexity O(n3).

Length✕３



Bottom-up Construction
Build a table of the shortest representations for all the 
string segments, starting from the shortest ones and 
gradually expanding to longer ones.

l Any segments of length four or less should be as-is.
l Knowing the shortest reps for lengths n and less, the 

shortest for of length n+1 segments are either:
l Concatenation of the shortest reps of the first k characters and 

the remaining n+1-k characters, for k = 1, ..., n. This can be 
checked with complexity of O(n), or

l Repetition of j identical segments of length (n+1)/j for any factor j
of n+1. Whether this is possible can be looked up in the 
repetition table.

The total complexity is O(n3).



E: Chayas
PROPOSER: SOU KUMABE

AUTHOR: SHINYA SHIROSHITA



Overview
There were 𝑛 chayas (teahouses) in a line.

You have 𝑚 records showing the following information:

Record 𝑖: chaya 𝑏! is between chaya 𝑎! and 𝑐!.

How many orders were there satisfying all the records? 

• 3 ≤ 𝑛 ≤ 24

• 1 ≤ 𝑚 ≤ 𝑛(𝑛 − 1)(𝑛 − 2)/2

𝑎! 𝑏! 𝑐!… …
※ 𝑐!  can come left of 𝑎! 	



Example

Records
1 5 3 2 4

1

53

2 4

2

3 2 4
1 3

1 2 4

5 3 2

3 2 4

2 1 3 2
※ 𝑐!  can come left of 𝑎! 	



Analysis
Let’s consider when we select chayas from left to right.

Let 𝐿! be the subset of the left 𝑖 chayas.

The condition “𝑏 is between 𝑎 and 𝑐” can be formulated as 
follows:

• For all 1 ≤ 𝑖 ≤ 𝑛 − 1, NONE of the below must hold.
• (A) 𝑏 ∈ 𝐿! and none of 𝑎, 𝑐 are in 𝐿!.
• (B) 𝑏 ∉ 𝐿! and both of 𝑎, 𝑐 are in 𝐿!.

How can we check these conditions quickly?

𝐿!

𝐿" 𝐿# 𝐿$ 𝐿% 𝐿&

𝑏 𝑎 𝑐

𝐿!
𝑏𝑎 𝑐



Analysis
For simplicity, we hereby consider the condition (A)

𝑏 ∈ 𝑆 and none of 𝑎, 𝑐 are in 𝑆

= 𝑆 where 𝑏 ⊆ 𝑆 ⊆ (all chayas) ∖ {𝑎, 𝑐}

for each of the records.

When we create a 2" boolean table memorizing each 
subset’s condition sufficiency, naïve enumeration for each 
record takes 𝑂 𝑚 ⋅ 2" = 𝑂 𝑛# ⋅ 2" , which is too slow.

We need to speed up the calculation. How can we do?

→ Let’s focus on all the records whose 𝑏 are the same. 

𝐿!
𝑏 𝑎 𝑐



Precomputation
When we define

𝑓 𝑆 = D1 if 𝑆 = (all chayas) ∖ 𝑎! , 𝑐! for some 𝑎! , 𝑏! , 𝑐! ,
0 otherwise,

Then, the subset 𝑆 containing 𝑏 contradicts the records if
𝑔 𝑆 ≔ max

$⊆&
𝑓(𝑇)

is 1. 𝑔 𝑆 is the maximum of 𝑓s of the supersets of 𝑆.

𝑔 𝑆 can be efficiently calculated by an approach based on
Fast Zeta Transformation.



𝑆 . 3 2 23 1 13 12 123

dp[0][𝑆] 0 0 0 1 0 0 1 0

dp[1][𝑆] 0 0 1 1 0 0 1 0

dp[2][𝑆] 1 1 1 1 1 0 1 0

dp[3][𝑆] 1 1 1 1 1 0 1 0

Precomputation
The following dp calculates 𝑔 𝑆 = dp 𝑛 − 1 [𝑆 ∖ {𝑏}].

For	simplicity,	we	renumber	the	id	of	chaya	𝑏	to	𝑛,	and	the	ids	of	the	
others	to	each	of	1	through	𝑛 − 1,	respectively.

dp[0][𝑆] 	= 	𝑓(𝑆) for each subset 𝑆 of 2 !,…,$%! .
for each chaya 𝑖 = 1,… , 𝑛 − 1:
  for each subset 𝑆 of 𝑖 ∉ 𝑆:
    dp 𝑖 𝑆 = max{dp 𝑖 − 1 𝑆 , dp 𝑖 − 1 𝑆 ∪ 𝑖 }
  for each subset 𝑆 of 𝑖 ∈ 𝑆:
    dp 𝑖 𝑆 = dp 𝑖 − 1 𝑆

An example where 
chayas are {1, 2, 3, 𝑏} 
and queries are 
(1, 𝑏, 2) and (2, 𝑏, 3).



Precomputation
This transformation (of some 𝑏) can be done in 𝑂(𝑛 ⋅ 2").

For other 𝑏s, we can calculate the dp at the same time when 
we use different bits of an integer.

We can solve the other condition (B) in the similar way.



Solution
The solution is equal to the number of the ways to increase 
chayas from left while satisfying the record conditions.

This can be also solved by dynamic programming.

As each condition check takes 𝑂(1) after the 
precomputation, the total time complexity is 𝑂(𝑛 ⋅ 2").

∅ …



F: Color Inversion on a 
Huge Chessboard

PROPOSER: KOHEI MORITA
AUTHOR: KOHEI MORITA



Problem
• Given 𝑁, 𝑄(1 ≤ 𝑁, 𝑄 ≤ 500,000) (as usual)

• You have to process 𝑄 queries for 𝑁×𝑁 chessboard.

• Flip color of a row

• Flip color of a column

• Print # of areas (= same color components) after each query

3 2 6



Key Point
• You can notice that each area forms rectangle.

• Let’s try with a random case.

•Why: row-i color is same with row-1 or inversion of row-1



Solution
•Managing row-1 color & column-1 color.

• And, (# of connected component) of row-1 & column-1.

• Print (# of area of row-1) * (# of area of column-1) after query

• You can process each query in 𝑂(1) time, total time 
complexity is 𝑂(𝑁 + 𝑄)



G: Fortune Telling
PROPOSER: MITSURU KUSUMOTO

AUTHOR: MITSURU KUSUMOTO



Problem Overview
• n cards are lined up (2 ≤ n ≤ 300000)

• Each time, we roll a die and when it shows x, we remove 
cards x-th, (x+6)-th, (x+12)-th, … from left.

•We end this when only one card remains.

• Compute the probability each initial card survives.



Naive DP

dp[n’][k] := “Probability that, when there are
       n’ cards, card k-th from left survives”



Naive DP

dp[n’][k] := “Probability that, when there are
       n’ cards, card k-th from left survives”

Θ(n2) entries!! Too many!!



Dependency
dp[n][:]



Dependency
dp[n][:]

dp[(5/6)n][:]
dp[(5/6)n+1][:]

only depends on



Dependency
dp[n][:]

dp[(5/6)n][:]
dp[(5/6)n+1][:]

dp[(5/6)2n][:]
dp[(5/6)2n+1][:]

dp[(5/6)2n+2][:]

only depends on

only depend on



Dependency
dp[n][:]

dp[(5/6)n][:]
dp[(5/6)n+1][:]

dp[(5/6)2n][:]
dp[(5/6)2n+1][:]

dp[(5/6)2n+2][:]

only depends on

only depend on

Required entries for DP calculation 
may be much smaller than n2 ?



Bound
The number of required entries for DP 
computation is roughly bounded by

𝑛"
!"#

$

𝑘
5
6

!%#



Bound
The number of required entries for DP 
computation is roughly bounded by

𝑛"
!"#

$

𝑘
5
6

!%#

?



If you can access to
Wolfram Alpha…

Yes, it’s 36, small.



Another method
You can estimate it without Wolfram Alpha:

uApproximate it by a tiny code

uDifferentiate 1+x+x2+…+xn = (1-xn+1)/(1-x) and set 
x=5/6, then take n→∞.

𝑛"
!"#

$

𝑘
5
6

!%#

= 36𝑛



Solution
Compute a DP table with memorization.

In general, if the die has A faces, time 
complexity is O(A3n).



H: Task Assignment 
to Two Employees

PROPOSER: YOICHI IWATA
AUTHOR: YOICHI IWATA



Problem
Assign tasks to two employees in an 
appropriate order to maximize the total profit.
• initial skill point: 𝑝!
• task compatibility: 𝑣",$
• skill growth: 𝑠",$
• profit = current skill point × 𝑣",$
• new skill point = current skill point + 𝑠",$



Optimize Ordering for Single 
Employee

skill point

𝑣

0 𝑝! 𝑝! + 𝑠" 𝑝! + 𝑠" + 𝑠#
𝑝! + 𝑠" + 𝑠# + 𝑠$

𝑣"

𝑣#

𝑣%

𝑣$

profit = total area
order = [1, 2, 3, 4]



Optimize Ordering for Single 
Employee

skill point

𝑣

0 𝑝!

𝑝! + 𝑠#
𝑝! + 𝑠" + 𝑠#

𝑝! + 𝑠" + 𝑠# + 𝑠$

𝑣"

𝑣#

𝑣%

𝑣$

Δprofit = 𝑠&𝑣' − 𝑠'𝑣& > 0
order = [2, 1, 3, 4]



Optimize Ordering for Single 
Employee

Optimal ordering = [𝑖', 𝑖&, … , 𝑖(]
s.t. 𝑠)!"#𝑣)! ≤ 𝑠)!𝑣)!"#

⇒	Sort & Greedy



Key Observation

Optimal profit 

="
!

𝑝"𝑣! +"
!,$

max(𝑠!𝑣$ , 𝑠$𝑣!)



Optimize Assignment
𝑥!: task 𝑖 is assigned to employee 1

Profit =

%
!

𝑝"𝑣#,!𝑥! +%
!,%

max(𝑠#,!𝑣#,% , 𝑠#,%𝑣#,!) 𝑥!𝑥%

+%
!

𝑝"𝑣&,!�̅�! +%
!,%

max(𝑠&,!𝑣&,% , 𝑠&,%𝑣&,!) 1𝑥! 1𝑥%

maximization of Quadratic pseudo-Boolean 
supermodular function → mincut !!!



I: Liquid Distribution
PROPOSER: RYOTARO SATO

AUTHOR: RYOTARO SATO



Problem Overview
Judge whether mixture process below is feasible.

Liquid A (𝒂𝟏 ml)
+ Liquid B (𝒃𝟏 ml)

…
Liquid A (𝒂𝒏 ml)

+ Liquid B (𝒃𝒏 ml)
Liquid A (𝒂𝟐 ml)

+ Liquid B (𝒃𝟐 ml)

Initial State

Liquid A (𝒄𝟏 ml)
+ Liquid B (𝒅𝟏 ml)

…
Liquid A (𝒄𝒎 ml)

+ Liquid B (𝒅𝒎 ml)
Liquid A (𝒄𝟐 ml)

+ Liquid B (𝒅𝟐 ml)

Final State
Mix!!

Constraints: 1 ≤ 𝑛,𝑚 ≤ 500, 	 ∑ 𝑎! = ∑𝑐" , ∑ 𝑏! = ∑𝑑" .



Observation: Curves
Sort all liquids by 𝑏!/𝑎! (or 𝑑"/𝑐" ) and plot cumulative sum.

Generated curves are always convex.

Liquid A [ml]3 4

4

1

𝑎!, 𝑏! = 1, 3
𝑎", 𝑏" = 3, 1

Liquid B [ml]



Observation: Mixture
What happens to curves when liquids are mixed?

→ Curves always move upper!

Liquid A [ml]3 4

4

1

Liquid B [ml]

𝑎!, 𝑏! = 1, 3

Extract 2 ml from each 
bottle and mix!

𝑎", 𝑏" = 3, 1



Solution
Mixture process is feasible if and only if final state curve NOT
passes under initial state curve.

Liquid A [ml]

Liquid B [ml]
Feasible Case

Initial State

Final State

Liquid A [ml]

Liquid B [ml]
Infeasible Case

Initial State
Final State



𝑂 𝑛𝑚 Implementation
For each segment 𝑃𝑄 of initial curve and each breakpoint 𝑅
of final curve, check sign of 𝑃𝑄 × 𝑃𝑅.

Initial State

Final State

𝑃
𝑄

𝑅

𝑃𝑄	× 𝑃𝑅 # ≥ 0 is required

Initial State

Final State

𝑃
𝑄

𝑅

𝑃𝑄	× 𝑃𝑅 # < 0 → NG

𝑥

𝑦

𝑥

𝑦



J: Do It Yourself?
PROPOSER: YUTARO YAMAGUCHI

AUTHOR: YUTARO YAMAGUCHI



Story
Complete the tasks with the smallest total fatigue of employees.



Story

Every task can be transferred to a boss.

Complete the tasks with the smallest total fatigue of employees.



Story
Complete the tasks with the smallest total fatigue of employees.

Every task can be transferred to a boss.



Story

2

5 8 3

16
The fatigue is
• depending on person, and
• proportional to # tasks !.

Complete the tasks with the smallest total fatigue of employees.



Complete the tasks with the smallest total fatigue of employees.

Story

2×5!

= 50

5×0!

= 0
8×0!

= 0
3×1!

= 3

1×0!

= 0
6×0!

= 0

The fatigue is
• depending on person, and
• proportional to # tasks !.



Complete the tasks with the smallest total fatigue of employees.

Story

2×2!

= 8

5×1!

= 5
8×0!

= 0
3×1!

= 3

1×1!

= 1

The fatigue is
• depending on person, and
• proportional to # tasks !.

6×1!

= 6

8 + 5 + 0 + 3 + 6 + 1 = 23



Problem
Given a rooted tree of 𝑛 vertices.  2 ≤ 𝑛 ≤ 5×10"

Given a fatigability constant 𝑓# of each employee. 1 ≤ 𝑓# ≤ 10$!

minimize	 9
#%$

&

𝑓#𝑥#! , where	𝑥# = # tasks	done	by	#𝑖



Solutions
[AC1]  Greedy Algorithm with Heavy-Light Decomposition

• Min-weight base of a laminar matroid  (Minimization of M-convex function)
• O 𝑛 ⋅ log 𝑛 ! time

[AC2]  Greedy + DP with Weighted-Union Heuristic
• dp 𝑣 = opt. solution of the subtree of 𝑣 (maintained by priority queue)

• O 𝑛 ⋅ log 𝑛 ⋅ log 𝐹 time  𝐹 = max
"
𝑓"

[TLE]  Naive DP on Tree
• dp 𝑣, 𝑘 = opt. value of the subtree of 𝑣 with 𝑘 tasks completed
• Θ 𝑛! time

2 ≤ 𝑛 ≤ 5×10# 
1 ≤ 𝑓" ≤ 10$!

TL: 10 sec



Key Observations

minimize 9
#%$

&

𝑓#𝑥#! , where 𝑥# = # tasks done by #𝑖

• 𝑥$, 𝑥!, … , 𝑥& is feasible  ⟺ ∑'∈)% 𝑥' ≤ 𝑇# ∀𝑖 ,

where 𝑇# is the subtree of 𝑖.

• 𝑓#𝑥#! = ∑*%$
+% 2𝑘 − 1 𝑓#

→ the 𝑘-th task takes cost 2𝑘 − 1 𝑓#
𝑇#

#𝑖

𝑓# 3𝑓# 5𝑓#



Key Observations

minimize 9
#%$

&

𝑓#𝑥#! , where 𝑥# = # tasks done by #𝑖

• 𝑥$, 𝑥!, … , 𝑥& is feasible  ⟺ ∑'∈)% 𝑥' ≤ 𝑇# ∀𝑖 ,

where 𝑇# is the subtree of 𝑖.

• 𝑓#𝑥#! = ∑*%$
+% 2𝑘 − 1 𝑓#

→ the 𝑘-th task takes cost 2𝑘 − 1 𝑓#
𝑓# 3𝑓# 5𝑓#

𝑇#

#𝑖



Reformulation

minimize 9
#%$

&

𝑓#𝑥#! , where 𝑥# = # tasks done by #𝑖

• Each employee #𝑖 has 𝑛 items with cost 𝑓# , 3𝑓# , … , 2𝑛 − 1 𝑓#.

• Minimize the total cost by selecting exactly 𝑛 items in total
subject to at most 𝑇# items are selected in each subtree 𝑇#.

Minimum Weight Base of a Laminar Matroid
→ Greedy is Optimal



Greedy Algorithm
2

5 8 3

16

next candidate
in priority queue

selected



Greedy Algorithm
2

5 8 3

𝟏6 3

next candidate
in priority queue

selected



Greedy Algorithm
𝟐

5 8 3

𝟏6 3

6

next candidate
in priority queue

selected



Greedy Algorithm
𝟐

5 8 𝟑

𝟏6 3

6

9

next candidate
in priority queue

selected



Greedy Algorithm
𝟐

5 8 𝟑

𝟏6

6

9

next candidate
in priority queue

selected

3



Greedy Algorithm
𝟐

𝟓 8 𝟑

𝟏6

6

915

next candidate
in priority queue

selected

3



Greedy Algorithm
𝟐

𝟓 8 𝟑

𝟏6

𝟔

915

10

next candidate
in priority queue

selected

3



Greedy Algorithm
𝟐

𝟓 8 𝟑

𝟏𝟔

𝟔

915

10

next candidate
in priority queue

selected

318



Greedy Algorithm
𝟐

𝟓 𝟑

𝟏𝟔

𝟔

next candidate
in priority queue

selected

8 915

10

18 3



Greedy with HL Decomposition
• An item can be selected
⟺ The subtree of every boss #𝑖 has positive capacity, i.e.,

cap 𝑖 ≔ 𝑇# − # items selected in 𝑇# > 0

• An item is selected  → Decrease cap 𝑖 by 1 for every boss #𝑖

• An item is not selected  → The same person will never work

Range Minimum + Range Add 2𝑛 times
O 𝑛 ⋅ log 𝑛 = time with Heavy-Light Decomposition



Solutions
[AC1]  Greedy Algorithm with Heavy-Light Decomposition

[AC2]  Greedy + DP with Weighted-Union Heuristic
• dp 𝑣 = opt. solution of the subtree of 𝑣 (maintained by priority queue)

• O 𝑛 ⋅ log 𝑛 ⋅ log 𝐹 time  𝐹 = max
"
𝑓"

◦ Merge is completed in O 𝑛 ⋅ log 𝑛 time (meldable heap) in total;
O 𝑛 ⋅ log 𝑛 ! time (usual heap) is also enough.

◦ #(insertion) = O 𝑛 ⋅ log 𝐹 is proved by considering a potential function

Φ 𝑣 ≔ I
&∈() *

log 𝑥 .

[TLE]  Naive DP on Tree

2 ≤ 𝑛 ≤ 5×10# 
1 ≤ 𝑓" ≤ 10$!

TL: 10 sec



On # insertion (Thanks to Kohei Morita)

• At every vertex 𝑣, the first item of cost 𝑓* must be inserted.
→ The potential increases ∑* log 𝑓* ≤ 𝑛 ⋅ log 𝐹 in total.

• When 𝑘 items, whose cost are 3𝑓* , 5𝑓* , … , 2𝑘 + 1 𝑓*, are inserted in addition,
𝑘 items with cost at least 2𝑘 + 1 𝑓* should be removed instead.
→ The potential decreases by a nonnegative value at least

𝑘 ⋅ log 2𝑘 + 1 𝑓* −I
"+$

,

log 2𝑖 + 1 𝑓* ≥
𝑘
2
log

2𝑘 + 1
𝑘 + 1

≥
𝑘
3
,

where we assume 𝑘 is even for simplicity and the base of log is 2.

Thus, # insertion ≤ 1 + 1 𝑛 + 3𝑛 ⋅ log 𝐹 = O 𝑛 ⋅ log 𝐹 .



K: Probing the Disk
PROPOSER: KIMINORI MATSUZAKI

AUTHOR: KIMINORI MATSUZAKI
MITSURU KUSUMOTO



Problem
Given a disk (radius ≥ 100) in a square (side = 105),
decide the position and the size of the disk,
by at most 1024 probes.

Each prove:
・ Query: a line segment

・ Answer: length on disk



Key to Solution
“Find a point that is surely in a disk”

If you find a point in a disk, you can solve the 
problem in 4 more probes.



A Simple Solution
1. Probe by vertical lines (1000 probes)

and find a line with the largest common length

2. Do binary search (11 probes) 
to find a point that is surely in the disk 

3. Find the center 
and radius (4 probes)


	0.pdf
	A.pdf
	B.pdf
	C.pdf
	D.pdf
	E.pdf
	F.pdf
	G.pdf
	H.pdf
	I.pdf
	J.pdf
	K.pdf

